A Hybrid Data Mining Model for Intelligent Customer Segmentation: The Case of Banking Industry
نویسندگان
چکیده
Customer segmentation is a prerequisite to all three phases of customer relationship management which consists of customer acquisition, customer retention and customer development. Input variables which are used in clustering techniques determine which phase of customer relationship management it is dealing with. As a result this paper aims at a review on the input variables used in customer segmentation studies; besides data mining techniques used in customer clustering is classified and discussed too. Finally, a new hybrid segmentation technique is introduced, and the results are compared to previous segmentation techniques using lift charts.
منابع مشابه
Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملRetaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study
This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...
متن کاملDeveloping a Macro-segmentation Model at Industry Level: Iranian Banking Industry
Drastic changes and turbulence in macro-economic factors have the greatest impact on banks target market attractiveness in Iran. It is assumed that conventional segmentation models at the corporate level are not efficient for banking system. This study aims to develop a new segmentation model at the industry level for banks of Iran. For this purpose, structures and variables at the industry lev...
متن کاملIntegrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملDesigning an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کامل